Invariant Rings through Categories
نویسنده
چکیده
We formulate a notion of “geometric reductivity” in an abstract categorical setting which we refer to as adequacy. The main theorem states that the adequacy condition implies that the ring of invariants is finitely generated. This result applies to the category of modules over a bialgebra, the category of comodules over a bialgebra, and the category of quasi-coherent sheaves on an algebraic stack of finite type over an affine base.
منابع مشابه
New Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups
In this paper, a new algorithm for computing secondary invariants of invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants. The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...
متن کامل$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملHomotopy Theory of Associative Rings
A kind of unstable homotopy theory on the category of associative rings (without unit) is developed. There are the notions of fibrations, homotopy (in the sense of Karoubi), path spaces, Puppe sequences, etc. One introduces the notion of a quasi-isomorphism (or weak equivalence) for rings and shows that similar to spaces the derived category obtained by inverting the quasiisomorphisms is natura...
متن کاملStrong Morita equivalence for semigroups with local units
Morita equivalence is a widely used tool for rings with identity. (Two rings are said to be Morita equivalent if the categories of unitary modules over them are equivalent.) For monoids, this notion is not really useful: in most cases it reduces to isomorphism. As the theory of Morita equivalence could be developed for the more general case of rings with local units, and then for idempotent rin...
متن کاملA Database of Invariant Rings
We announce the creation of a database of invariant rings. This database contains a large number of invariant rings of finite groups, mostly in the modular case. It gives information on generators and structural properties of the invariant rings. The main purpose is to provide a tool for researchers in invariant theory.
متن کامل